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Tracer Transport Problem

A tracer, represented by its mixing ratio q, is transported in the flow with velocity u

∂ρ

∂t
+∇ · ρu = 0

∂ρq

∂t
+∇ · ρqu = 0

→
Dq

Dt
= 0

Why are transport schemes so important?
Biogeochemistry can require 100s of tracers

Atmosphere is the most expensive component of Earth System Models

Tracer advection is the dominant cost

We want tracer transport algorithms that are

conservative (of
∫
ρq) and bounds preserving (of q)

free stream preserving (satisfy compatibility between q and ρ)

capable of running on unstructured grids

efficient for large numbers of tracers
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High-Order Method Modeling Environment
(HOMME)

Spectral element dynamical core used in
CESM and ACME

Continuous Galerkin finite element
method using Gauss-Lobatto quadrature

Generally runs on the cubed sphere grid,
but applicable to any unstructured
quadrilateral grid on the sphere

Advection using the standard spectral element method with
high-degree polynomials is accurate, but expensive due to time
step restrictions
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HOMME Tracer Advection Schemes

SE-Eul1 CSLAM2 Opt-SESL3

Method Eulerian spectral semi-Lagrangian semi-Lagrangian
element finite volume spectral element

Grid type spectral element finite volume spectral element
Unstructured grid yes no yes

Conservative yes yes yes, with optimization
Bounds preserving yes, with limiter yes, with limiter yes, with optimization

Max CFL 0.33 with 1.0 2.0
3-stage RK

1 Guba et al. (2014), Optimization based limiters for the spectral element method, JCP.
2 Lauritzen et al. (2010), A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed
sphere grid, JCP.
3 Bochev et al. (2013), Fast optimization-based conservative remap of scalar fields through aggregate mass
transfer, JCP.
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Semi-Lagrangian Spectral Element Tracer
Transport

Consider a cell with tracer q values at
GLL nodes at time t

Compute backward Lagrangian
trajectories of each node

Locate Lagrangian points on Eulerian
mesh (ξ1, ξ2) = F−1(λ, θ)

Map Eulerian nodal values to Lagrangian
nodes using spectral element basis

qLj (t) =

nNodes∑
i=1

qi(t)φi(ξ
L
j )

Lagrangian update of tracer values
q(t+ ∆t) = qL(t)

Perform optimization step

Dq

Dt
= 0
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Optimization

Target
∂tq

T + u · ∇qT = 0

stable and accurate solution,
not required to possess all
desired physical properties

Objective
‖q̃ − qT‖

minimize the distance
between the solution and a

suitable target

Constraints
qmin ≤ q̃ ≤ qmax∫

ρq = Q

desired physical properties
viewed as constraints

Advantages
Solution is globally optimal with respect to the target and desired
physical properties
Decouples accuracy from enforcement of physical properties
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Optimization Algorithm


minimize
1

2
‖q̃ − qT‖2`2 subject to∫

ρq = Q, qmin ≤ q̃ ≤ qmax

Use local bounds over element where interpolation is done qmin
i ≤ q̃i ≤ qmax

i
Total tracer mass where mi are elements of diagonal mass matrix∫

ρq ≈
∑
i

miqi = Q

Use secant method for Lagrange multiplier λ
Optimal solution satisfies

q̃i(λ) = median(qmin
i , qTi +miλ, q

max
i ) , i = 1, . . . , N

and

(
N∑
i=1

miq̃i(λ)

)
−Q = 0

The algorithm generally requires ≈ 5 secant iterations. In serial, it is as efficient as
standard slope limiting or flux limiting techniques.
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2-D Advection Tests

Implemented in HOMME shallow water code

Use prescribed nondivergent deformational flow field, T = 5

u(λ, θ, t) = 2 sin2 (λ− 2πt/T ) sin(2θ) cos (πt/T ) + 2π cos(θ)/T

v(λ, θ, t) = 2 sin (2 (λ− 2πt/T )) cos(θ) cos (πt/T )

Departure points computed using Taylor series approach and analytic velocity
field

Initial tracer distributions are notched cylinders and Gaussian hills centered at
(λ1, θ1) = (5π/6, 0) and (λ2, θ2) = (7π/6, 0)

Run Opt SESL with CFL = 2, corresponding to dt = 720s for 0.75◦ resolution

Lauritzen et al. (2012) A standard test case suite for two-dimensional linear transport on the sphere, Geosci. Model
Dev.
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2-D Advection Tests: Convergence
Initial Midpoint Final
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Opt-SESL is competitive with Eulerian SE transport and CSLAM in terms of
accuracy and much more efficient for this simple example
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2-D Advection Tests: Discontinuous
Distribution

Initial Condition SESL Opt-SESL

Mass error = 5.52e-4 Mass error = 1.51e-11
Min value = -0.0902 Min value = 0.1
Max value = 1.158 Max value = 0.9997
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Terminator Test

Idealized chemistry test

Cl2
k1−→ 2Cl

Cl + Cl
k2−→ Cl2

Track two species: Cl and Cl2, total
should remain constant
Cly = Cl + 2.0Cl2

Use deformational velocity field from
2-D passive tracer tests

Results shown here using 0.75 ◦ grid
resolution

Limiting methods that preserve linear
relationships between tracers should
be able to preserve Cly as constant

Initial Conditions:

Cl

Cl2

Lauritzen et al. (2014) The terminator ’toy’-chemistry test: A simple tool to assess errors in transport schemes,
Geosci. Model Dev.
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Terminator Test

Naive implementation

Max difference |Cly − 4.0× 10−6| =
2.83 ×10−11

Final l2 error in Cly = 3.90× 10−6
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Terminator Test

Scale Cl and Cl2 by 4.0× 10−6

before transport algorithm

Max difference |Cly − 4.0× 10−6| =
6.78 ×10−17

Final l2 error in Cly = 6.94× 10−12
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Opt-SESL maintains linear relationships between tracers even with simple
chemistry
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Baroclinic Instability Test Case

2 ◦ degree grid resolution

Tracers transported using model
velocity

Runge-Kutta/Taylor series approach
for departure points

1D vertical remap

Initial

Opt SESL Day 9

Eul SE Day 9

Opt-SESL results are comparable to Eulerian SE solution
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Preliminary Parallel Scaling Results

Opt-SESL implemented in HOMME
primitive equations

1/4 degree cubed-sphere mesh with
86K elements

Eulerian SE scheme has excellent
scaling out to 1 element per core

Opt-SESL algorithm is faster except
at the limit of scalability

SESL algorithm without optimization
is very efficient, but not conservative
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Conclusions

Opt-SESL algorithm looks promising
Optimization algorithm succesfully conserves mass and
enforces bounds
Efficient, can be run with large time steps
Preserves linear relationships between tracers

Future Work
Continue to investigate parallel efficiency
Testing with large numbers of tracers
More testing of 3-D examples

ACES4BGC

SAND2015-1837C 20


	Shallow Water Examples

